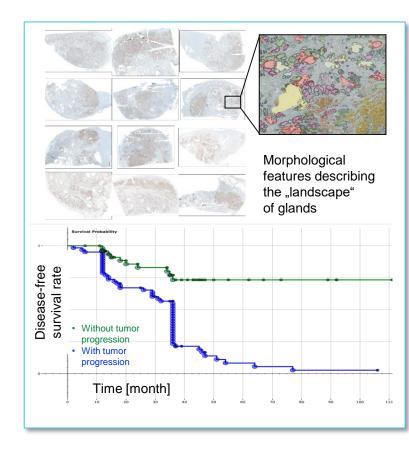


Tissue Phenomics From Tissue to Biomarkers

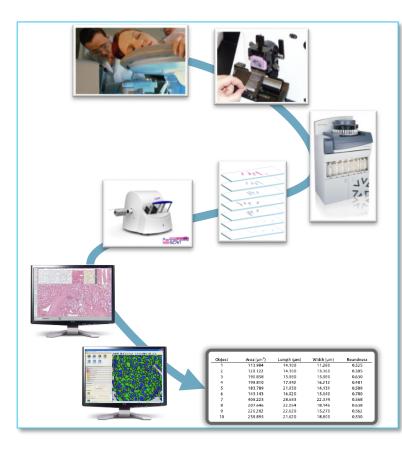
Carolina Vanegas on behalf of

N. Harder, R. Huss and N. Brieu November 10th, 2016

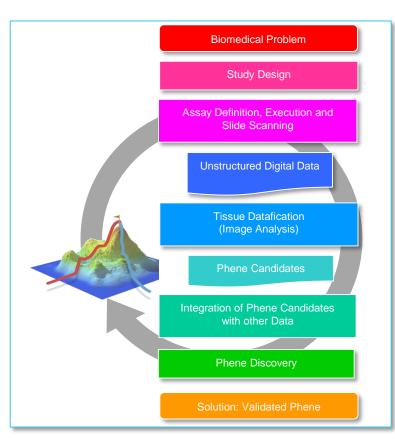
Image Analysis and Data Mining for Discovering Novel **Prognostic** and Predictive Markers From Histopathological Data



- Big data approach to quantitative histopathology
- Comprehensive screening of phenes which predict clinical outcome
- Phenes are mathematical descriptions of spatial patterns detected in tissue which have biomedical relevance
- Automated workflow from assay development to phene validation enables automatic multiparametric optimization



- Big data approach to quantitative histopathology
- Comprehensive screening of phenes which predict clinical outcome
- Phenes are mathematical descriptions of spatial patterns detected in tissue which have biomedical relevance
- Automated workflow from assay development to phene validation enables automatic multiparametric optimization

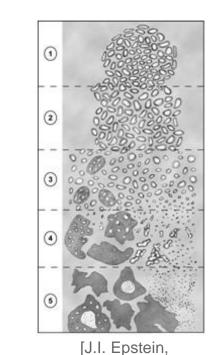


- Big data approach to quantitative histopathology
- Comprehensive screening of phenes which predict clinical outcome
- Phenes are mathematical descriptions of spatial patterns detected in tissue which have biomedical relevance
- Automated workflow from assay development to phene validation enables automatic multiparametric optimization

- Big data approach to quantitative histopathology
- Comprehensive screening of phenes which predict clinical outcome
- Phenes are mathematical descriptions of spatial patterns detected in tissue which have biomedical relevance
- Automated workflow from assay development to phene validation enables automatic multiparametric optimization

Discovering Prognostic Factors for Prostate Cancer Tumor Progression

Prostate Cancer


Prostate cancer

- Second most frequently diagnosed cancer in men in 2012 (15% of all male cancers) [World Cancer Report 2014, WHO]
- Increasing incidence with increasing age

Gleason score

 Sum of pattern-number of the primary (major) and secondary (minor) grades (e.g., 7a=3+4)

Gleason score	6	7	8-10
	Low risk	Intermediate risk	High risk
[NCCN guidelines, NCCN.org]			

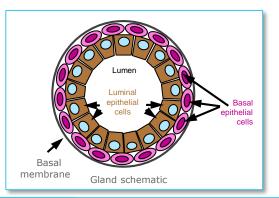
Am J Surg Pathol, 2005]

- Small, uniform glands
- More space between glands
- Infiltration of cells from glands at margins
- Irregular masses of cells with few glands
- Lack of glands, sheets of cells

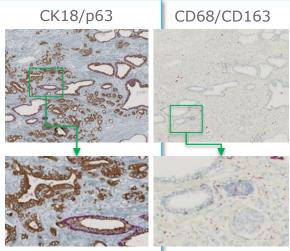
Project Goals

Goal 1: Development of a prognostic test to automatically predict tumor progression based on resected prostate tissue with high accuracy and stratify patients into treatment groups

- **Goal 2:** Test should have an improved prognostic power compared to the state-of-the-art method, the Gleason score (assigned by pathologists)
- **Data:** Tissue sections from prostate resections of selected patients (whole slide images)



Two Novel Prognostic Markers


For Prostate Cancer Progression

- Spatial relationship of glands
 - **CK18/p63** Tumor vs. non-tumor glands
- Tumor-associated Macrophages and T-cells
 - CK18/p63 Tumor vs. non-tumor glands
 - CD68/CD163
 M1/M2 Tumor Associated
 Macrophages (TMAs)
 - CD3/CD8

Tumor infiltrating T-cells (TILs)

CD3/CD8

Prognostic factor I Spatial Relationship of Glands

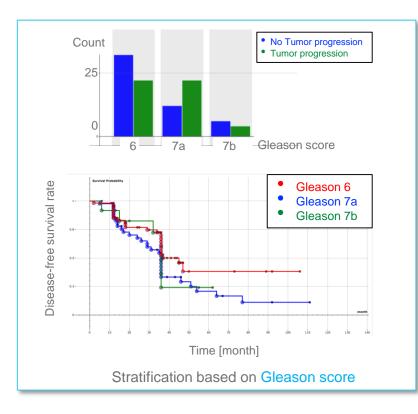
ISBI 2016 – Co-occurrence features characterizing gland distribution patterns as new prognostic markers in prostate cancer whole slide images

The patient cohort

98 selected patients

Age <= 75 years

Staging: pT2


Resection border: R0

Gleason-Score: 3+3 (6), 3+4 (7a), 4+3 (7b)

Low- to intermediate-risk patients after Radical Prostatectomy

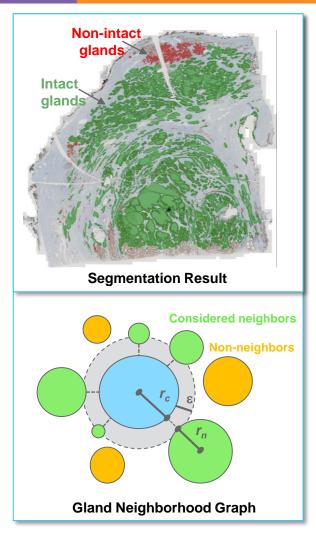
Clinical outcome data available

Observation times of 2 to 118 month

Image Analyis

- Automatic Segmentation
 - P63 marked regions
 - Glands (epithelium and lumen)

• Classification of glands


Size: Small, Medium, and Large AND Functional: Intact (with p63)/ Non Intact (no p63)

• Co-occurence features

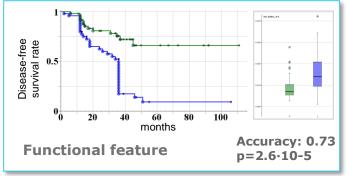
- Analogy to classical Haralick features [1]
- Co-occurrence matrices of differently classified neighboring glands are computed
- Different distances and directions are considered
- 2140 features are generated in total

[1] Harder N. *et al.*, "Co-occurrence features characterizing gland distribution patterns as new prognostic markers in prostate cancer whole-slide images," *Proc. IEEE ISBI 2016*, pp. 807-810, 2016.

Data Mining

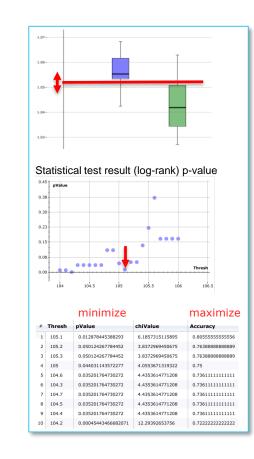
Cross

validation

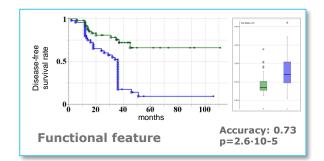

The stratification performance is systematically tested for each feature with log-rank test

I. Optimize the threshold for classifying patients per feature w.r.t. the mean accuracy and the log-rank test p-value

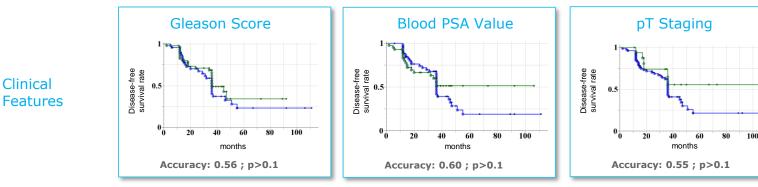
2. Rank features according to their best classification accuracy


Prognostic Biomarkers

Co-occurrence probability of small-non-intact to medium-intact



- No tumor progression
- Tumor progression



Comparison to clinical features

Image Analysis & Data Mining

- No tumor progression
- Tumor progression

DEFINIENS^{*} the tissue phenomics company

Prognostic factor II Tumor-Associated Macrophages and T-cells

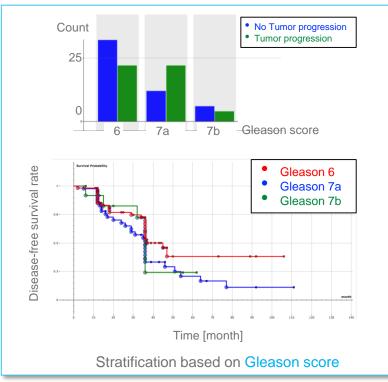
SITC 2016 - Tumor-associated Macrophages (TAMs) as a prognostic marker for prostate cancer progression

The patient cohort

89 selected patients

Age <= 75 years

Staging: pT2

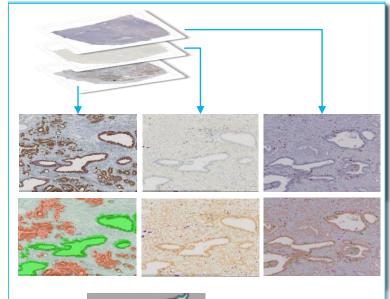

Resection border: R0

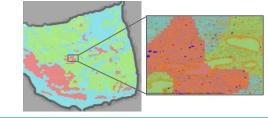
Gleason-Score: 3+3 (6), 3+4 (7a), 4+3 (7b)

Low- to intermediate-risk Patients after Radical Prostatectomy

Clinical outcome data available

Observation times of 2 to 118 month

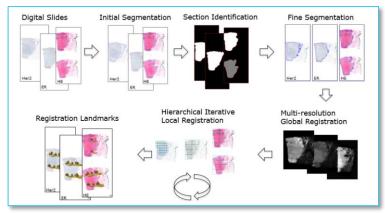

Image Analyis


- Three double stain images CK18/p63, CD68/CD163, and CD3/CD8
- **Object detection** in each image
 - CK18/p63
 - Segmentation of tumor and non-tumor regions
 - CD68/CD163
 - Detection of M1 (cytotoxic) and M2 (tumor growth promoting) macrophages
 - CD3/CD8
 - Detection of cytotoxic and other T cells
- Co-Registration

DEFINIENS


the tissue phenomics company

• Joint region-based quantification of TAMs and Tumor Infiltrating Lymphocytes

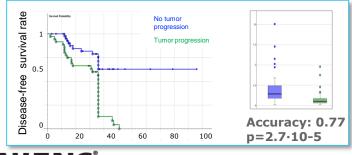


- Generic Image Analyis Solutions
- Object Detection [1]
- Auto-adaptive machine learning
- Selection of representative tiles
- Fishing of well-defined objects using shape and size constraints
- Training slide-specific Random Forest models

- Registration [2]
- Global initial alignment of the tissue sections
- Local refinement of interesting regions
- Multiresolution approach

[1] Brieu, N. et al. "Slide specific models for segmentation of differently stained digital histopathology whole slide images", SPIE Medical Imaging, 2016
[2] Yigitsoy, M. et al. "Hierarchical patch-based co-registration of differently stained histopathology slides", To Slide 19 Appear in SPIE Medical Imaging, 2017

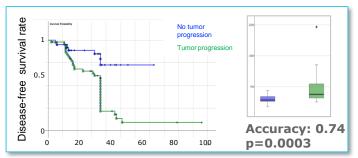
Features


- Features are generated by **combining** the image based measurements
- For instance,

the tissue phenomics company

Densities (number positive cells per area) **Ratios** of positive cells in different tissue sections

Prognostic Biomarkers


Prostate cancer patients without tumor progression show a significantly higher ratio of CD8+ (cytotoxic tcells) to CD163+ (M2) cell densities in the tumor microenvironment

Data Mining

- The stratification performance is systematically tested for each feature with **log-rank** test
- Optimize the threshold
- Rank features w.r.t accuracy and p-value

Prostate cancer patients without tumor progression show a significantly lower average distance of CD3+ (non-cytotoxic t-cells) to CD8+ (cytotoxic t-cells) cells in the tumor microenvironment

Conclusion

Conclusion

Tissue Phenomics:

- Generic Image analysis and Data mining enable the discovery of better biomarkers
- Extract features from Whole Slide Images \rightarrow image analysis
- Correlate with clinical outcome data \rightarrow data mining
- As an example, the discovery of two biomarkers showing prognostic potential to predict tumor progression and survival time
 - Based on spatial organization of glands
 - Based on co-localized TILs and TAMS

Potential high impact for prostate cancer patient treatment decisions

Thank you

Contacts:

Nathalie Harder - <u>nharder@definiens.com</u> Ralf Huss- <u>rhuss@definiens.com</u>

