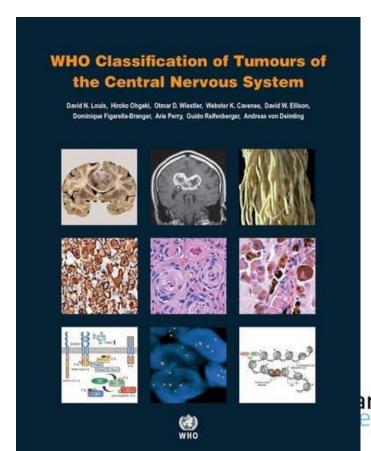
Novelties in the WHO 2016 classification of brain tumours Centre de Recherche en Oncologie biologique et Oncopharmacologie

Pr D.Figarella-Branger Service d'Anatomie Pathologique et de Neuropathologie, La Timone, Marseille UMR 911 Inserm, Université d'Aix-Marseille

REVIEW



re de nerche en ologie biologique

opharmacologie

The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary

David N. Louis¹ · Arie Perry² · Guido Reifenberger^{3,4} · Andreas von Deimling^{4,5} · Dominique Figarella-Branger⁶ · Webster K. Cavenee⁷ · Hiroko Ohgaki⁸ · Otmar D. Wiestler⁹ · Paul Kleihues¹⁰ · David W. Ellison¹¹

WHO Classification of Tumours of the Central Nervous System

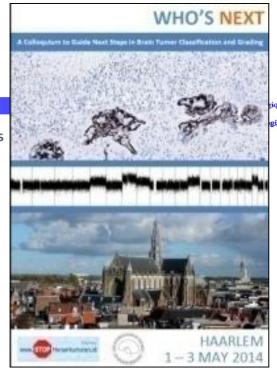
The 2016 WHO classification

- > A nosological shift
 - « Integrated » diagnostic
- New entities, new variants and pattern and deletion of others
- Some tumour groups have been deeply changed
 - Gliomas
 - Embryonal tumours
- > Limits
- > Future directions

A nosological shift

Before 2016

- The diagnosis was based on histological parameters only
 - Classification according to microscopic similarities with different putative cells of origin
 - Histopronostic criteria
- Discovery of cannonical genetic alterations
- How can we integrate these genetic data in the diagnosis of tumours of the SNC?

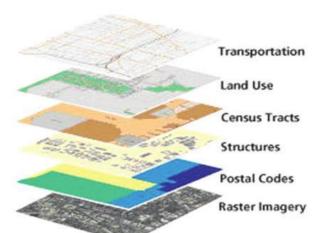

Guidelines for how to incorporate molecular findings into brain tumour diagnoses

Brain Pathology ISSN 1015-6305

MISCELLANEOUS

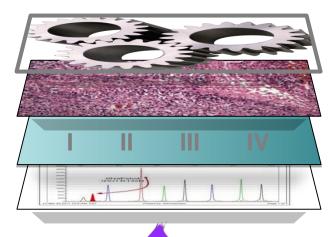
International Society of Neuropathology-Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading

David N. Louis¹; Arie Perry²; Peter Burger³; David W. Ellison⁴; Guido Reifenberger⁵,⁶; Andreas von Deimling⁶,⁷; Kenneth Aldape⁶; Daniel Brat⁶; V. Peter Collins¹⁰; Charles Eberhart³; Dominique Figarella-Branger¹¹; Gregory N. Fuller¹²; Felice Giangaspero¹³,¹⁴; Caterina Giannini¹⁵; Cynthia Hawkins¹⁶; Paul Kleihues¹⁷; Andrey Korshunov⁶,¹⑻; Johan M. Kros¹⁰; M. Beatriz Lopes²⁰; Ho-Keung Ng²¹; Hiroko Ohgaki²²; Werner Paulus²³; Torsten Pietsch²⁴; Marc Rosenblum²⁵; Elisabeth Rushing²⁶; Figen Soylemezoglu²⁷; Otmar Wiestler²⑻; Pieter Wesseling²⁹,₃⁰

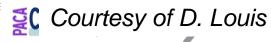

ISN-Haarlem format of "layered diagnoses",

- WHO'S NEXT

 A Collection to Send from Broad to the Transaction of Sending and Sending


 The Sending Sen
- Integrated Diagnosis (incorporated all aspects of tissue diagnosis)
- Histological Diagnosis
- WHO Grade (histological grade)
- Molecular information

Google Maps: GIS layers
Organized by Geographical Positioning

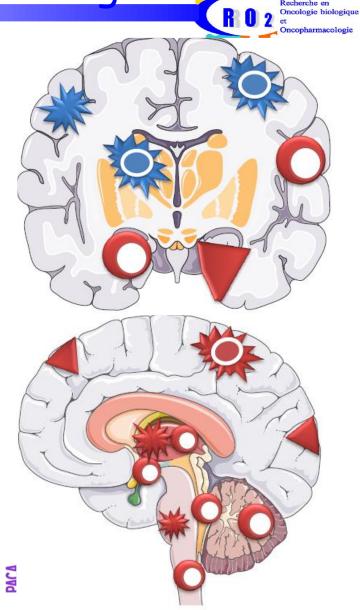


Inserm

A nosological shift

2016

- > Integrated diagnosis:
 - Combination of histopathological and molecular features
 - Must be performed by the pathologist
- > NOS « Not Otherwise Specified »: there is insufficient information to assign a more specific code:
 - The genetic tests have not been performed
 - They have been not fully performed
 - · The results does not show the diagnostic genetic alterations



Gliomas in 2016: the major findings that have preceded the changes

- > Major advances in genetics
 - Distinction between infiltrative and circumbscribed gliomas
 - Distinction between adult and children infiltrative gliomas
- > The mixed gliomas are no longer recognized
- Some histologically defined gliomas are highly heterogeneous
- Molecular alterations define three groups of adult gliomas grade II and III

The master genes of infiltrative gliomas

- Thanks to the wholegenome sequencing
- IDH mutations characterized grade II and III adult infiltrative gliomas whatever their subtype (astro, oligo, mixte)
- Histone mutations characterized infiltrative gliomas in children and young adults (midline gliomas)

Science 2008: Parson et al

Oncologie biologique

An Integrated Genomic Analysis of Human Glioblastoma Multiforme

D. Williams Parsons^{1,2,*}, Siân Jones^{1,*}, Xiaosong Zhang^{1,*}, Jimmy Cheng-Ho Lin^{1,*}, Rebecca J. Leary^{1,*}, Philipp Angenendt^{1,*}, Parminder Mankoo³, Hannah Carter³, I-Mei Siu⁴, Gary L. Gallia⁴, Alessandro Olivi⁴, Roger McLendon⁵, B. Ahmed Rasheed⁵, Stephen Keir⁵, Tatiana Nikolskaya⁶, Yuri Nikolsky⁷, Dana A. Busam⁸, Hanna Tekleab⁸, Luis A. Diaz Jr.¹, James Hartigan⁹, Doug R. Smith⁹, Robert L. Strausberg⁸, Suely Kazue Nagahashi Marie¹⁰, Sueli Mieko Oba Shinjo¹⁰, Hai Yan⁵, Gregory J. Riggins⁴, Darell D. Bigner⁵, Rachel Karchin³, Nick Papadopoulos¹, Giovanni Parmigiani¹, Bert Vogelstein^{1,†}, Victor E. Velculescu^{1,†}, and Kenneth W. Kinzler^{1,†}

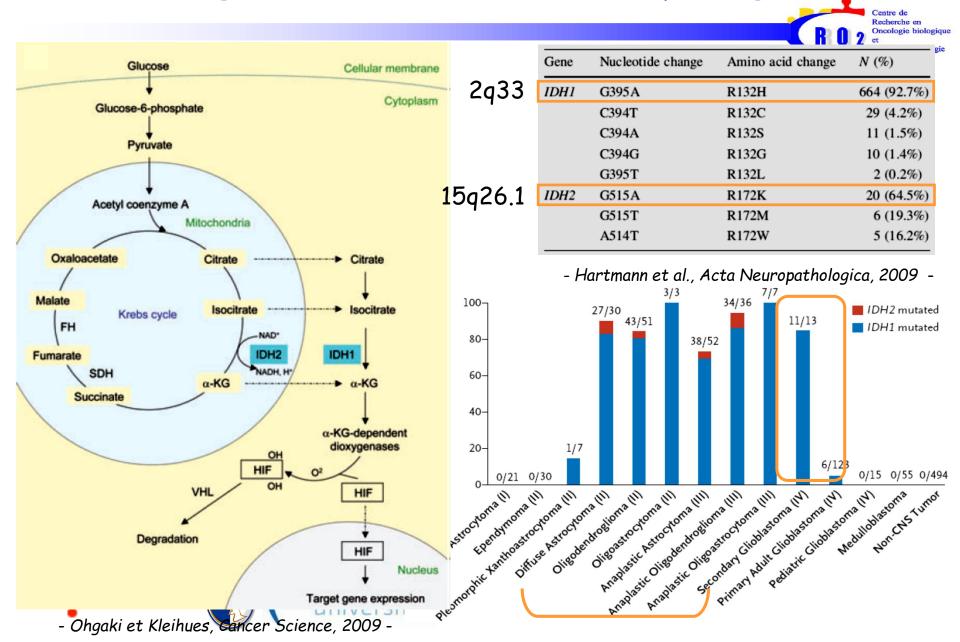
Nature 2012:

Schwartzentruber et al

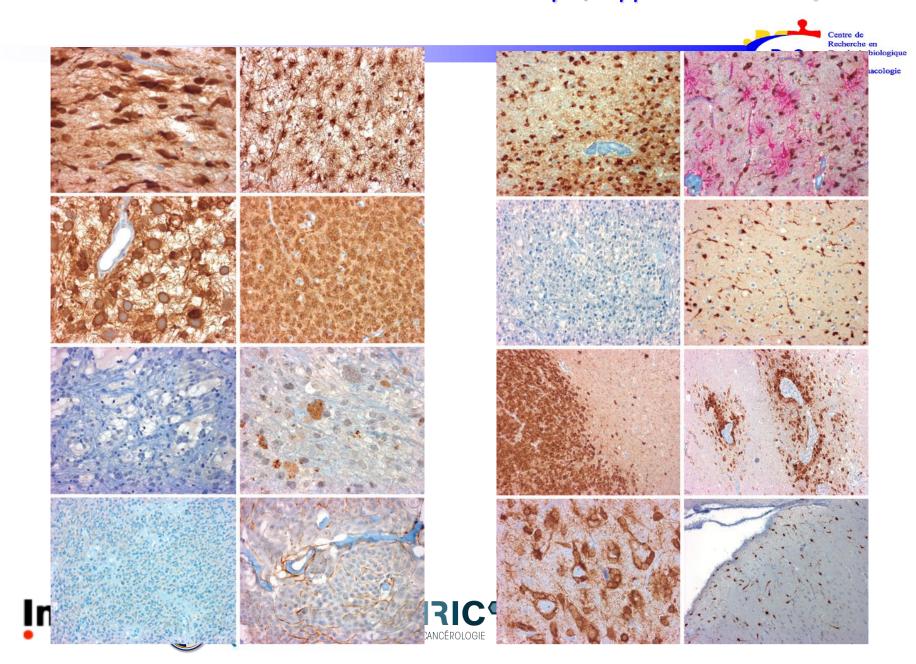
Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma

Jeremy Schwartzentruber¹*, Andrey Korshunov²*, Xiao-Yang Liu³*, David T. W. Jones⁴, Elke Pfaff⁴, Karine Jacob³, Dominik Sturm⁴, Adam M. Fontebasso³, Dong-Anh Khuong Quang³, Martje Tönjes⁵, Volker Hovestadt⁵, Steffen Albrecht⁶, Marcel Kool⁴, Andre Nantel², Carolin Konermann³, Anders Lindroth³, Natalie Jäger⁰, Tobias Rausch¹⁰, Marina Ryzhova¹¹, Jan O. Korbel¹⁰, Thomas Hielscher¹², Peter Hauser¹³, Miklos Garami¹³, Almos Klekner¹⁴, Laszlo Bognar¹⁴, Martin Ebinger¹⁵, Martin U. Schuhmann¹⁶, Wölfram Scheurlen¹², Arnulf Pekrun¹³, Michael C. Frühwald¹⁰, Wölfgang Roggendort²⁰, Christoph Kramm²¹, Matthias Dürker², Jeffrey Atkinson²³, Pierre Lepage¹, Alexandre Montpetit¹, Magdalena Zakrzewska²⁴, Krzystof Zakrzewski²⁵, Pawel P. Liberski²⁴, Zhifeng Dong²⁶, Peter Siegel²⁰, Andreas E. Kulozik²³, Marc Zapatka⁵, Abhijit Guha²³, David Malkin²³, Jörg Felsberg³⁰, Guido Reifenberger³⁰, Andreas von Deimling²₋³³, Koichi Ichimura³², V. Peter Collins⁵²², Hendrik Witt⁴.³², Till Milde²³³, Old Milt²²³, Cindy Zhang²³, Pedro Castelo-Branco³³, Peter Lichter⁵, Damien Faury³, Uri Tabori²³8.2⁰, Christoph Plass⁵, Jacek Majewski³, Stefan M. Pfister⁴.²³² & Nada Jabado³.³⁴

Nature Genet 2012: Wu et al

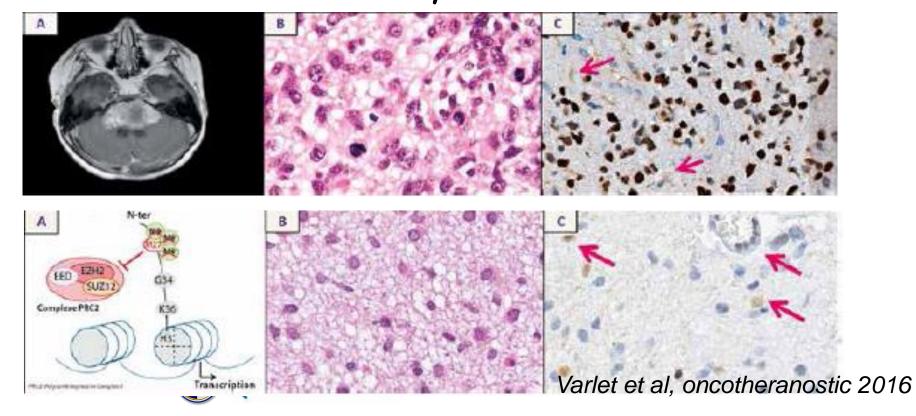

Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas

Ga Jan Zh ANCÉR Zh


Aix*Marseille S

Gang Wu^{1,*}, Alberto Broniscer^{2,*}, Troy A McEachron^{3,*}, Charles Lu⁴, Barbara S Paugh³, Jared Becksfort⁵, Chunxu Qu⁵, Li Ding⁴, Robert Huether¹, Matthew Parker¹, Junyuan Zhang³, Amar Gajjar², Michael A Dyer³, Charles G Mullighan⁶, Richard J Gilbertson³, Elaine R. Mardis⁴, Richard K. Wilson^{4,*}, James R Downing^{6,*}, David W Ellison⁶, Jinghui Zhang^{1,*}, and Suzanne J Baker^{3,*} for the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project

IDH genes (isocitrate deshydrogenase)



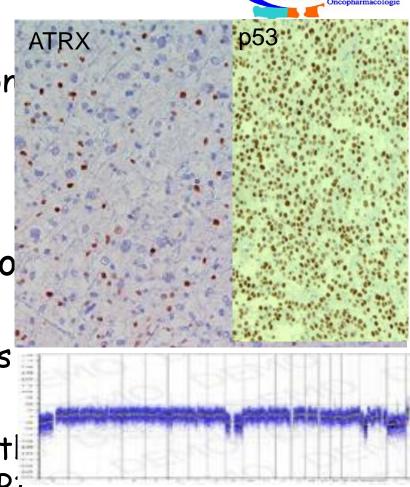
The usefulness of IDH1R132H antibody (Capper et al 2009)

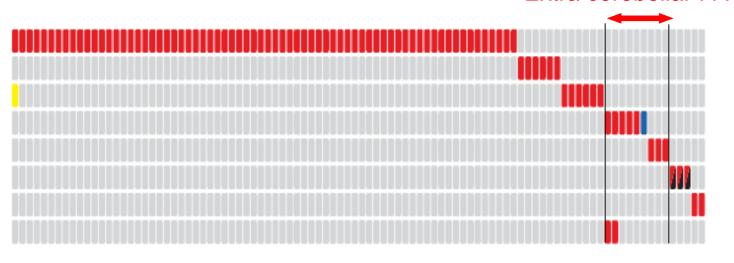
Histone mutations (K27M) are a common feature of midline gliomas Centre de Recherche en Oncologie biologique et Concopharmacologie

➤ K27M mutation in H3F3A and HIST1H3B HIST1H3C genes can be detect by immunohistochemistry

Other genetic alterations associated with IDH and histone mutations

- > ATRX and TP53
 - Associated with IDH and histor mutations
 - Astrocytic phenotype
- > 1p19q codeletion:translocation t(1.19)(q10;p10)
 - Associated with IDH mutations
 - Oligodendroglial phenotype
 - Other mutations associated with 1p19q codel: CIC (19q) et FUBPi





MAPK pathway alterations: whole genome sequencing of 96 PA cases (Jones et al 2013)

Extra cerebellar PA

KIAA1549-BRAF Other BRAF fusion BRAF mutation FGFR1 mutation NTRK2 fusion NF1 mutation KRAS mutation PTPN11 mutation

- All PA demonstrated at least one alteration
- These altérations are mutually exclusive except for FGFR1 and PTPN11
- > The KIAA1549-BRAF fusion is the most frequent one
- FGFR1 mutation and NTRK2 fusion are observed in extra-cerebellar PA

Mixed gliomas

Acta Neuropathol (2014) 128:551–559 DOI 10.1007/s00401-014-1326-7

ORIGINAL PAPER

Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma

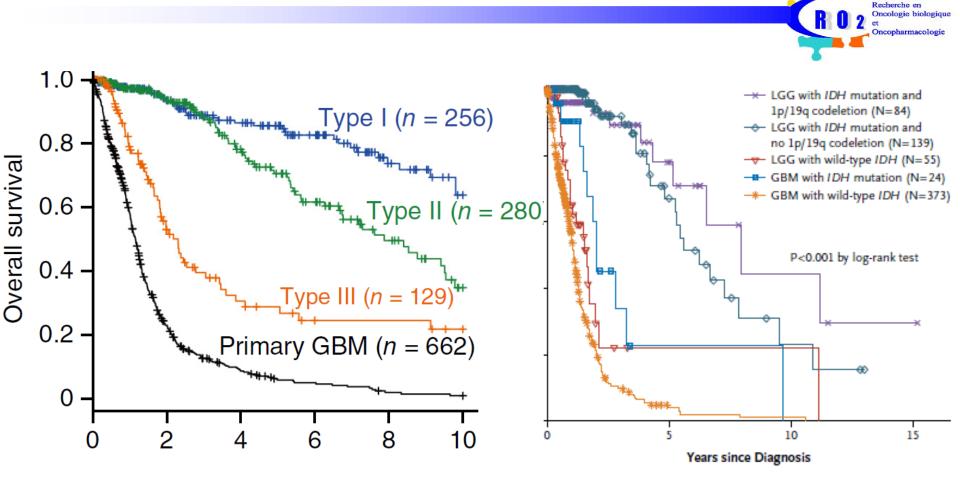
Felix Sahm · David Reuss · Christian Koelsche · David Capper · Jens Schittenhelm · Stephanie Heim · David T. W. Jones · Stefan M. Pfister · Christel Herold-Mende · Wolfgang Wick · Wolf Mueller · Christian Hartmann · Werner Paulus · Andreas von Deimling

Some histologically defined gliomas are heterogeneous exemple of anaplastic oligodendrogliomas

Recherche en

	Intact 1p19q AO	1p19q codelete	P < 10 ⁻⁴
		AO	I manage
MPV	88%	82%	ha deline
Necrosis	44%	28% 💆 🕫	pad and series
INA	22.5%	88.5%	<u></u>
TP53	29%	12% \$ 0,4-	1+h1.
IDH R132H	29%	88%	7,
IDH1/2 mutation	44%	97%	
Amplifications	41%	0,0	7
EGFR	13%	33	0,0 10,0 20,0 30,0 40,0 50,0 60,0
PDGFRA	10%		PFS (months)
CDKN2A deletion	24%	<1%	P < 10 ⁻⁴
Chr 4 loss	3%	31%	
Chr 7gain	45%	10%	
Chr 9q loss	0	15%	\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
Chr 10 loss	44%	4% s	4
Chr 11q gain	0	16%	<u> </u>
Chr 17p loss	16%	<1%	
Mean of chromosome	7.1	4.7	
altera linserm	Aix*Marseille SIR	EROLOGIE MARSEILLE SCAN	0,0 10,0 20,0 30,0 40,0 50,0 60,0 OS (months)

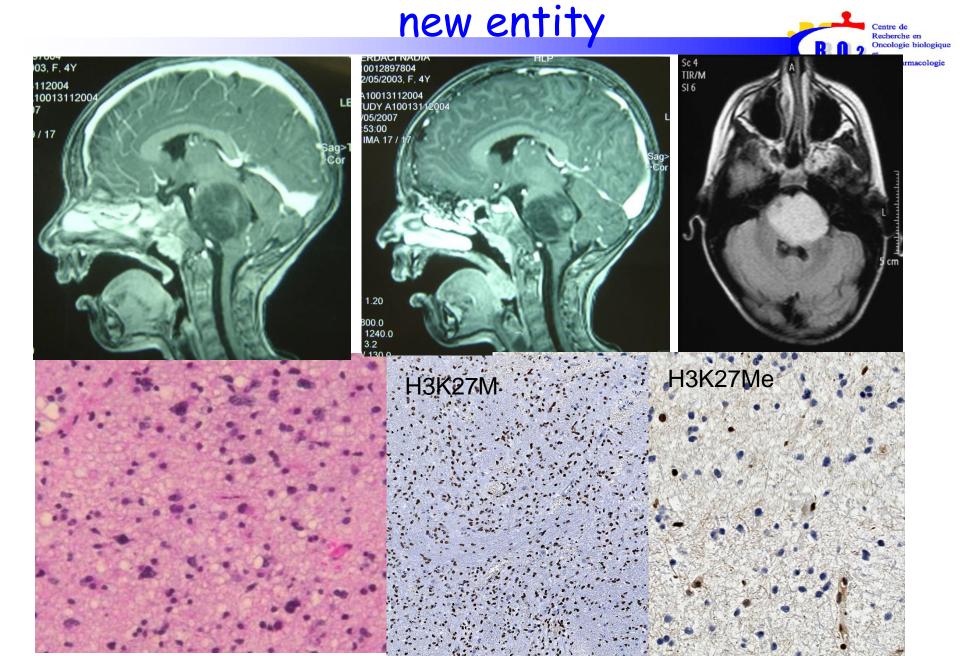
Stratification of grade II and III gliomas



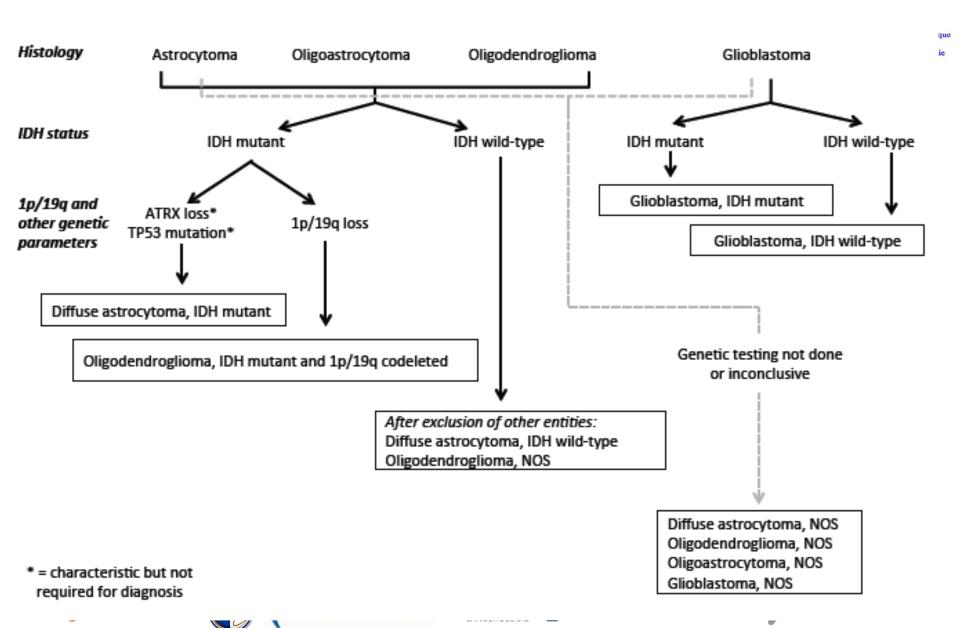
Pronostic impact of molecular subgroups

Suzuki et al nature Genet 2015

Brat et al NEJM 2015

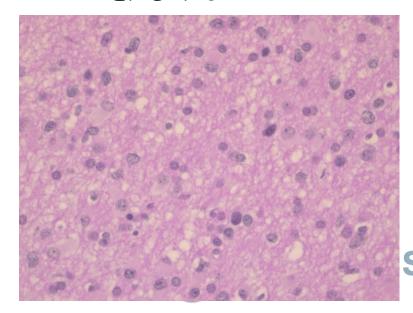

Gliomas in 2016

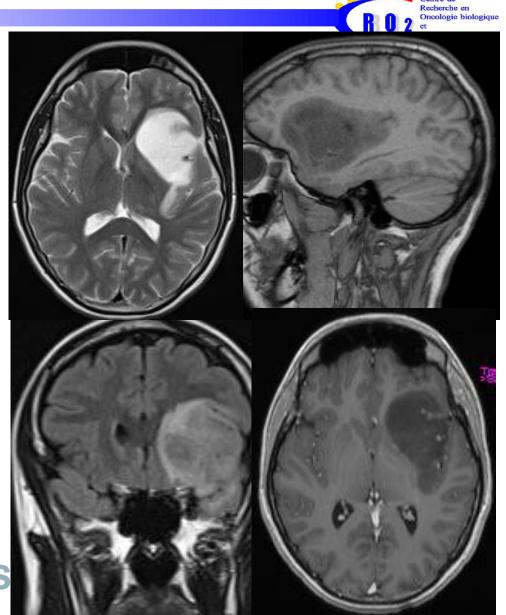
Astr	ocytic tumours
	ytic astrocytoma
	omyxoid astrocytoma
	ependymal giant cell astrocytoma
PLACE - 1997	morphic xanthoastrocytoma
The second second	se astrocytoma
ALC: UNKNOWN	orillary astrocytoma
	emistocytic astrocytoma
	otoplasmic astrocytoma
	plastic astrocytoma
Depth of the Control	plastoma
Gi	ant cell glioblastoma
	iosarcoma
	natosis cerebri
Olia	odendroglial tumours
	odendroglioma
	plastic oligodendroglioma
MIIOL	Masur digulariulogiloliki
Olig	oastrocytic tumours
Oligo	pastrocytoma


Anaplastic oligoastrocytoma

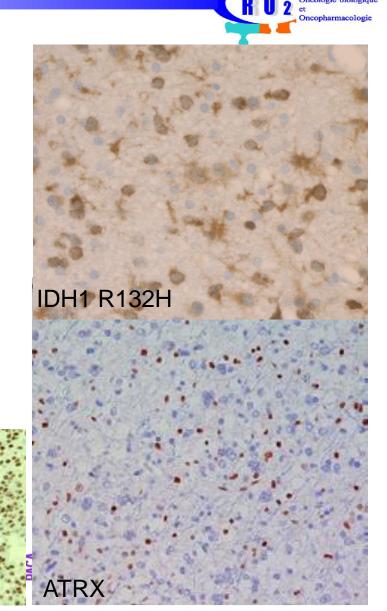
	Diffuse astrocytic and oligodendroglial tumours Diffuse astrocytoma, IDH-mutant Gemistocytic astrocytoma, IDH-mutant	9400/3 9411/3	
7	Diffuse astrocytoma, IDH-wildtype	9400/3	
	Diffuse astrocytoma, NOS	9400/3	ie
	Anaplastic astrocytoma, IDH-mutant Anaplastic astrocytoma, IDH-wildtype Anaplastic astrocytoma, NOS	9401/3 <i>9401/3</i> 9401/3	20
	Glioblastoma, IDH-wildtype	9440/3	
	Giant cell glioblastoma	9441/3	
	Gliosarcoma	9442/3	
>	Epithelioid glioblastoma	9440/3	
	Glioblastoma, IDH-mutant	9445/3*	
	Glioblastoma, NOS	9440/3	
→	Diffuse midline glioma, H3 K27M-mutant	9385/3*	
	Oligodendroglioma, IDH-mutant and	0.450/0	
	1p/19q-codeleted	9450/3 9450/3	
	Oligodendroglioma, NOS	9450/5	
	Anaplastic oligodendroglioma, IDH-mutant		
	and 1p/19q-codeleted	9451/3	
	Anaplastic oligodendroglioma, NOS	9451/3	
	Oligoastrocytoma, NOS	9382/3	
	Anaplastic oligoastrocytoma, NOS	9382/3	
R	Other astrocytic tumours Pilocytic astrocytoma Pilomyxoid astrocytoma Subependymal giant cell astrocytoma Pleomorphic xanthoastrocytoma Anaplastic pleomorphic xanthoastrocytoma	9421/1 9425/3 9384/1 9424/3 9424/3	
	, , , , , , , , , , , , , , , , , , , ,		1

Diffuse midline glioma, H3K27M mutant: a

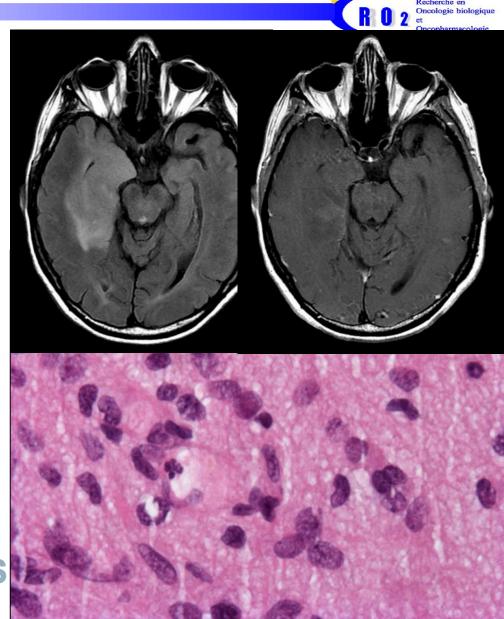



Diffuse gliomas: histology, IDH status, other genetic parameters → WHO diagnosis

Exemple 1: 34 year old male


- > Integrated diagnosis:
 - PENDING
- > Histological diagnosis
 - Diffuse astrocytoma
- > Grade II
- > Molecular informations
 - PENDING

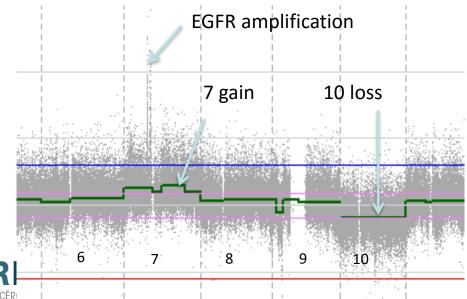
Exemple 1: Final diagnosis


- > Integrated diagnosis:
 - Diffuse astrocytoma, IDH mutant grade II
- > Histological diagnosis
 - Diffuse astrocytoma
- > Grade II
- > Molecular informations:
 - IDH1R132H positive ATRX loss of expression (p53 positive)

Exemple 2: 60 year old male

- > Integrated diagnosis:
 - PENDING
- > Histological diagnosis
 - Anaplastic astrocytoma
- > Grade III?
- > Molecular informations
 - PENDING

Exemple 3: final diagnosis


- Integrated diagnosis:
 - Anaplastic astrocytoma IDH-wildtype
- > Histological diagnosis
 - Anaplastic astrocytoma
- Grade III
- Molecular information
 - IDH1R132H negative, lack of IDH mutation, EGFR amplification, +7 -10
- Comment:
 - Molecular feature of GBM

Acta Neuropathol (2010) 120:719-729 DOI 10.1007/s00401-010-0777-8

ORIGINAL PAPER

Absence of *IDH* mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis

Philippe Metellus · Bema Coulibaly · Carole Colin · Andre Maues de Paula · Alexandre Vasiljevic ·
David Taieb · Anne Barlier · Blandine Boisselier · Karima Mokhtari · Xiao Wei Wang · Anderson Loundou ·
Frederique Chapon · Sandrine Pineau · L'Houcine Ouafik · Olivier Chinot · Dominique Figarella-Branger

Ependymomas in 2016: the major findings that have preceded the changes

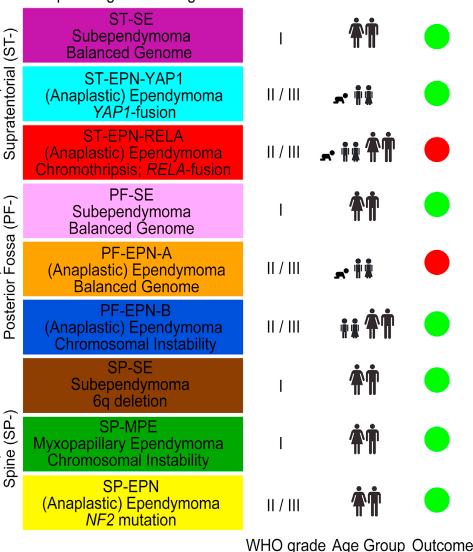
Acta Neuropathol (2014) 127:609-611

Supratentorial ependymomas of childhood carry C11orf95–RELA fusions leading to pathological activation of the NF- κB signaling pathway

Torsten Pietsch · Inken Wohlers · Tobias Goschzik · Verena Dreschmann · Dorota Denkhaus · Evelyn Dörner · Sven Rahmann · Ludger Klein-Hitpass

Nature. 2014 February 27; 506

C11orf95-RELA fusions drive oncogenic NF- κ B signaling in ependymoma

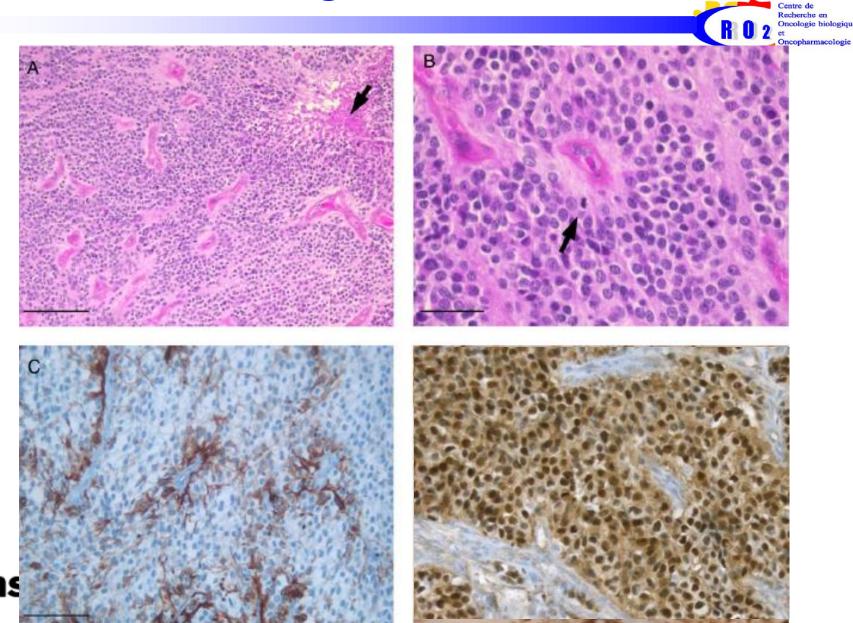

Matthew Parker^{1,2,*}, Kumarasamypet M. Mohankumar^{3,*}, Chandanamali Punchihewa⁴ Ricardo Weinlich^{5,*}, James D. Dalton^{1,4}, Yongjin Li^{1,2}, Ryan Lee⁴, Ruth G. Tatevossia Timothy N. Phoenix³, Radhika Thiruvenkatam³, Elsie White³, Bo Tang^{1,4}, Wilda Orisn Kirti Gupta⁴, Michael Rusch², Xiang Chen², Yuxin Li^{2,6}, Panduka Nagahawhatte², Erli Hedlund², David Finkelstein², Gang Wu², Shella Shurtleff⁴, John Easton^{1,4}, Kristy Bo Donald Yergeau¹, Bhavin Vadodarla¹, Heather L Mulder¹, Jared Becksford⁴, Pankaj C Robert Huether⁶, Jing Ma¹, Guangchun Song¹, Amar Gajjar^{1,7}, Thomas Merchant⁸, Frederick Boop⁹, Amy A Smith¹⁰, Li Ding^{1,11}, Charles Lu^{1,11}, Kerri Ochoa^{1,11}, Da Zhao^{1,2}, Robert S Fulton^{1,11}, Lucinda L Fulton^{1,11,12}, Elaine R. Mardis^{1,11}, 1², 1⁴, Richar Wilson^{1,11}, James R. Downing^{1,4}, Douglas R. Green⁵, Jinghui Zhang^{1,2}, David W Ellison^{1,4}, and Richard J. Gilbertson^{1,3}

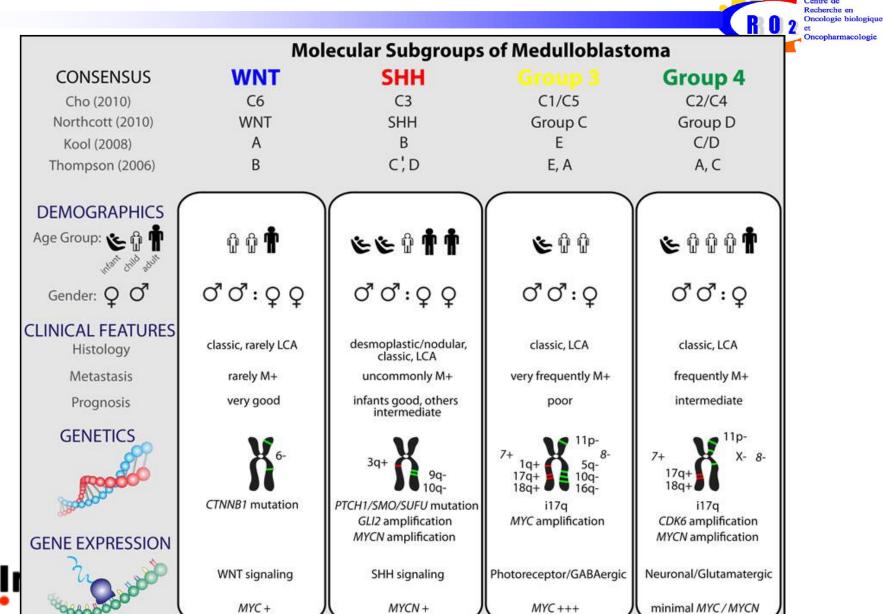
Cancer Cell

Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups

Kristian W. Pajtler, 1,2,37 Hendrik Witt, 1,3,4,37 Martin Sill, 5,37 David T.W. Jones, 1 Volker Hovestadt, 6 Fabian Kratochwil, 1 Khalida Wani, 7 Ruth Tatevossian, 8 Chandanamali Punchihewa, 8 Pascal Johann, 1 Jüri Reimand, 9 Hans-Jörg Wamatz, 10 Marina Ryzhova, 11 Steve Mack, 12 Vijay Ramaswamy, 12,13 David Capper, 14,15 Leonille Schweizer, 14,15 Laura Sieber, 1 Andrea Wittmann, 1 Zhiqin Huang, 6 Peter van Sluis, 16 Richard Volckmann, 16 Jan Koster, 16 Rogier Versteeg, 16 Daniel Fults, 17 Helen Toledano, 18 Smadar Avigad, 19 Lindsey M. Hoffman, 20 Andrew M. Donson, 20 Nicholas Foreman, 20 Ekkehard Hewer, 21 Karel Zitterbart, 22,23 Mark Gilbert, 24 Terri S. Armstrong, 24,25 Nalin Gupta, 26 Jeffrey C. Allen, 27 Matthias A. Karajannis, 26 David Zagzag, 28 Martin Hasselblatt, 30 Andreas E. Kulozik, 30 Olaf Witt, 331 V. Peter Collins, 32 Katja von Hoff, 33 Stefan Rutkowski, 33 Torsten Pietsch, 34 Gary Bader, 9 Marie-Laure Yaspo, 10 Andreas von Deimling, 14,15 Peter Lichter, 4,6 Michael D. Taylor, 12 Richard Gilbertson, 35 David W. Ellison, 8 Kenneth Aldape, 36 Andrey Korshunov, 14,15,38 Marcel Kool, 1,38,* and Stefan M. Pfister 1,34,48,*

Molecular Subgrouping of Ependymal Tumors is Superior to Histopathological Grading for Risk Stratification


Ependymomas in 2016


- > Grade is maintained although questionable
- > Cellular ependymoma is deleted
- A genetically defined ependymoma subtype has been accepted: Ependymoma, RELA fusion-positive

	Ependymal tumours		
	Subependymoma	9383/1	
	Myxopapillary ependymoma	9394/1	
	Ependymoma	9391/3	
	Papillary ependymoma	9393/3	
	Clear cell ependymoma	9391/3	
	Tanycytic ependymoma	9391/3	
I	Ependymoma, <i>RELA</i> fusion-positive	9396/3*	
Inse	Anaplastic ependymoma	9392/3	CEF

Pathological features

Major advances in the genetic of medulloblastomas (summarized in Taylor et al 2012)

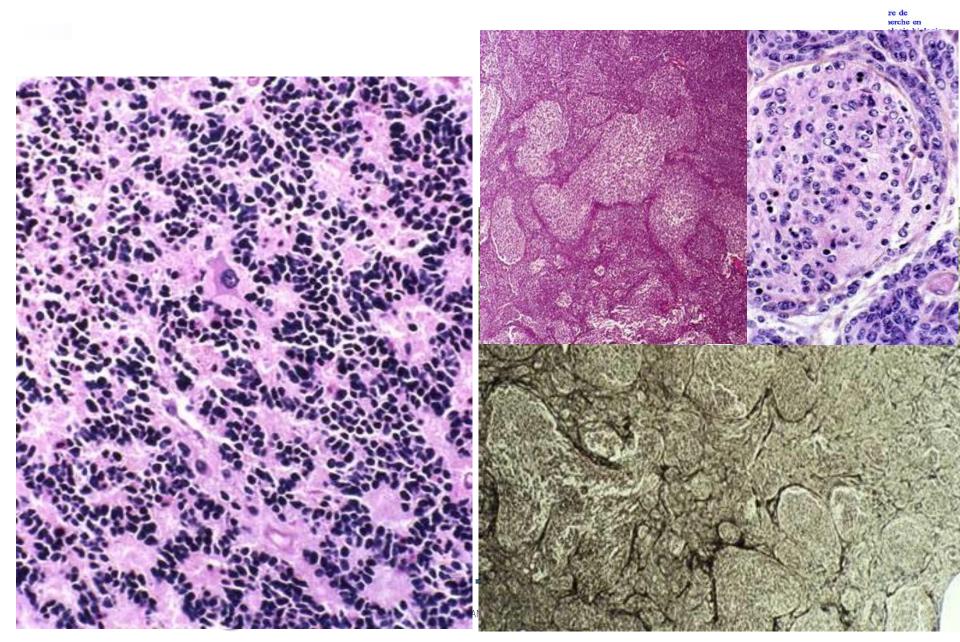
Embryonal tumours

WHO 2016

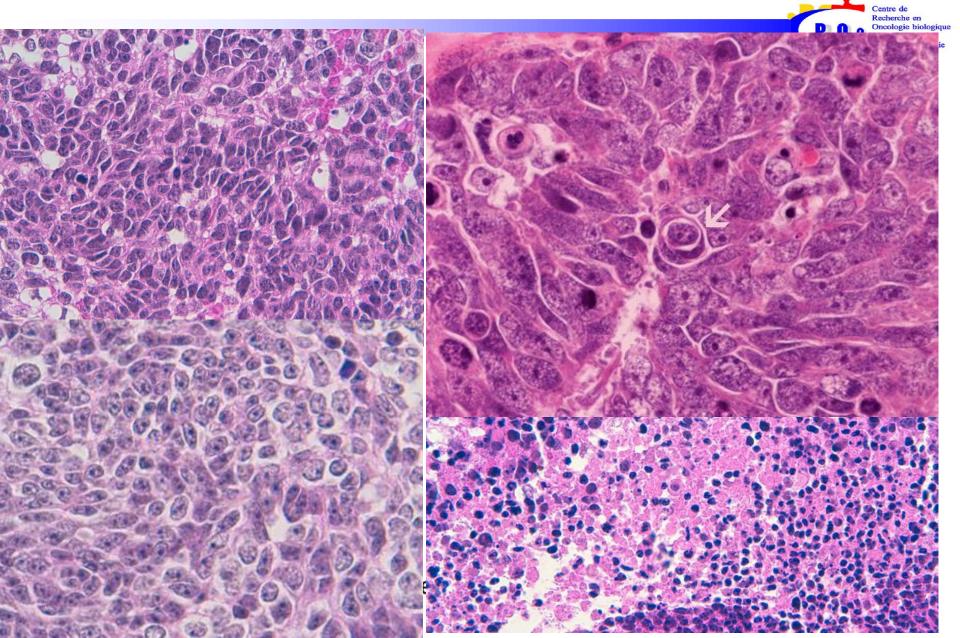
- Medulloblastomas:major conceptual changes in medulloblastomas: marriage of histological and molecular classification schemes
- Other embryonal tumours
- > WHO 2007

Embryonal tumours

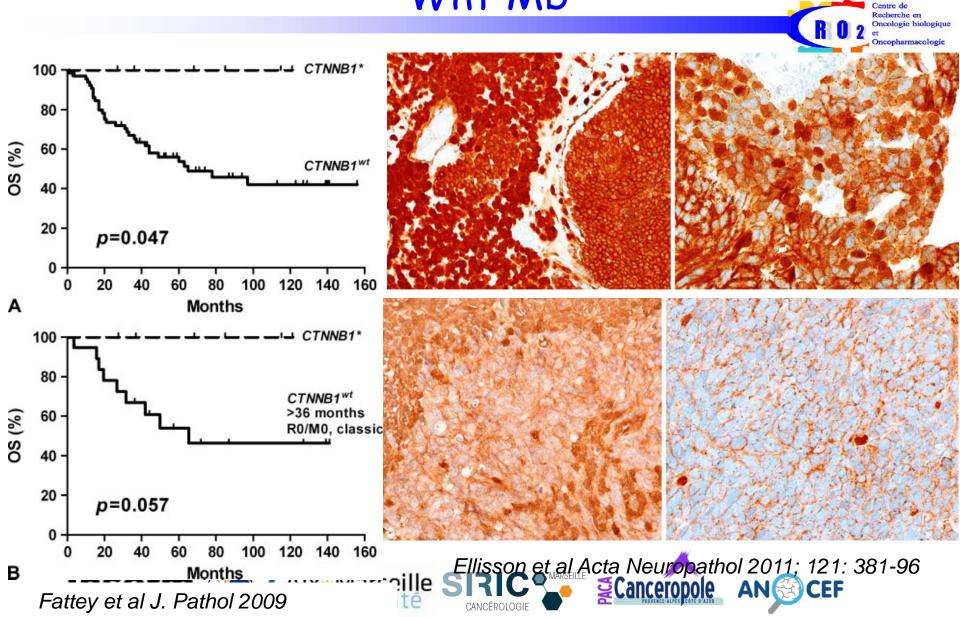
Medulloblastoma	9470/3
Desmoplastic/nodular medulloblastoma	9471/3
Medulloblastoma with extensive	
nodularity	9471/3*
Anaplastic medulloblastoma	9474/3*
Large cell medulloblastoma	9474/3
CNS primitive neuroectodermal tumour	9473/3
CNS Neuroblastoma	9500/3
CNS Ganglioneuroblastoma	9490/3
Medulloepithelioma	9501/3
Ependymoblastoma	9392/3
Atypical teratoid / rhabdoid tumour	9508/3

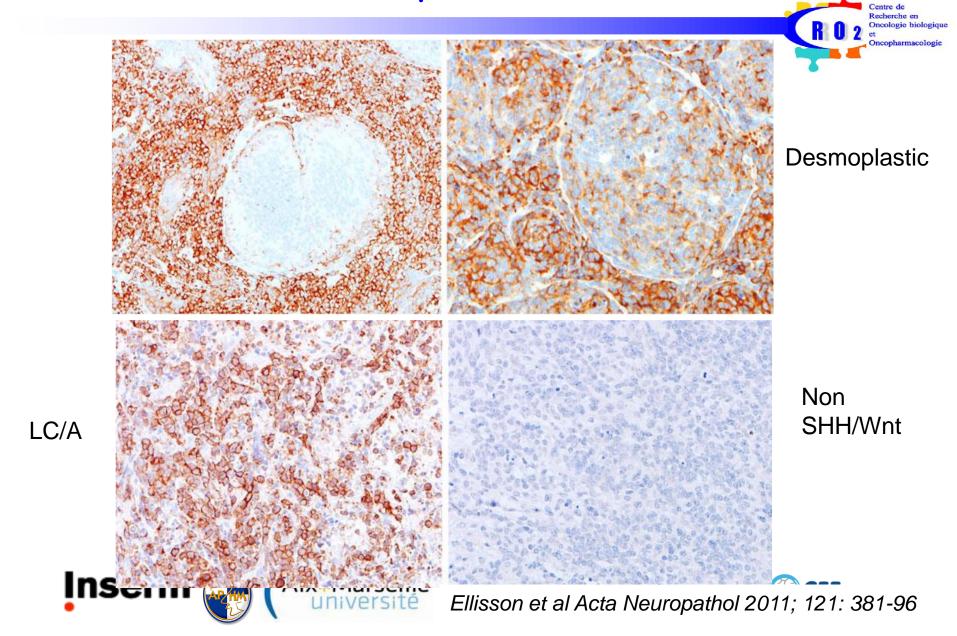

> WHO 2016

Embryonal tumours



Linbiyona tumours	
Medulloblastoma, genetically defined	
Medulloblastoma, WNT-activated	9475/3*
Medulloblastoma, SHH-activated and	
TP53-mutant	9476/3*
Medulloblastoma, SHH-activated and	
TP53-wildtype	9471/3
Medulloblastoma, non-WNT/non-SHH	9477/3*
Medulloblastoma, group 3	
Medulloblastoma, group 4	
Medulloblastoma, histologically defined	
Medulloblastoma, classic	9470/3
Medulloblastoma, desmoplastic/nodular	9471/3
Medulloblastoma with extensive nodularity	9471/3
Medulloblastoma, large cell/anaplastic	9474/3
Medulloblastoma, NOS	9470/3
Embryonal tumour with multilayered rosettes,	
C19MC-altered	9478/3
Embryonal tumour with multilayered	
rosettes, NOS	9478/3
Medulloepithelioma	9501/3
CNS neuroblastoma	9500/3
CNS ganglioneuroblastoma	9490/3
CNS embryonal tumour, NOS	9473/3
Atypical teratoid/rhabdoid tumour	9508/3
CNS embryonal tumour with rhabdoid features	9508/3


Medulloblastoma, classic and desmoplasic


Pleiomorphism, wraping, nuclear molding, apoptotic figures and necrosis characterized anaplastic Mb

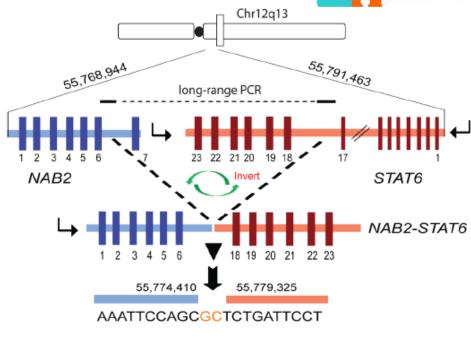
Nuclear β catenin expression characterized Wnt Mb

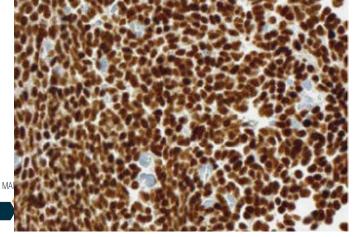
GAB1 expression in MB

Filamin and Yap1 expression in MB Oncopharmacologie SHH Filamin Non SHH/Wnt

Yap1

	WNT	NNT SHI		Non WNT/ non SHH	
		TP53 wt	TP53 mut	Group 3	Group 4
Age	Childhood	Infancy Adult	Childhood	Infancy Childhood	All ages
Pathology	Classic	Desmoplasic /nodular	Large cell/anaplasic	Classic Large cell/anaplasic	Classic
Genetic	Monosomy 6	PTCH1 mutation	TP53 mutation	PVT1-MYC	KDM6A
Germline mutation	APC	PTCH1 SUFU	TP53		

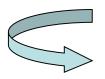



WHO 2016: solitary fibrous tumour /haemangiopericytoma SFT/HPC__

In contrast to neuropathologists, soft tissue pathologists have removed HPC since decade

Both SFT and HPC share inversions at 12q13 fusing the NAB2 and STAT6 gene Chmielecki et al Nature 2013, Robinson et al Nature Genet 2013

This leads to strong nuclear STAT6 accumulation Aix*Marseille SIRIC

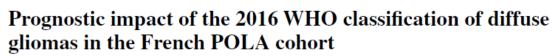


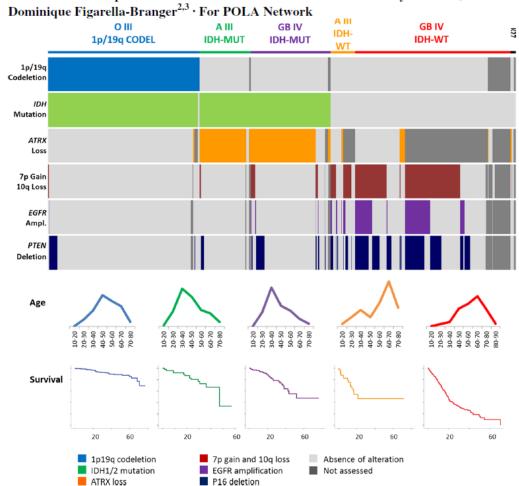
Limits 1. Adult gliomas

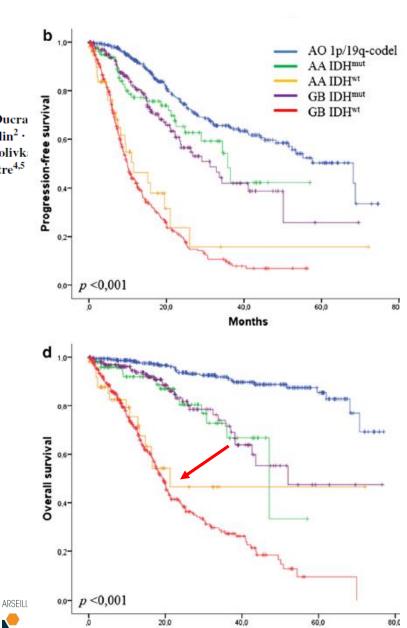
The category of diffuse astrocytoma and Anaplastic astrocytoma IDH -wildtype need to be better characterized

The grading criteria within each well defined histomolecular subgroup need to be refined

Some lessons of the POLA network



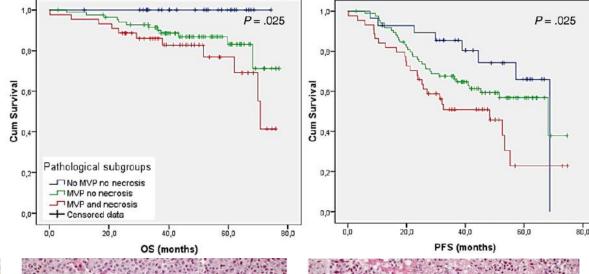


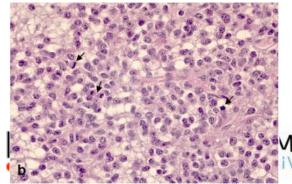


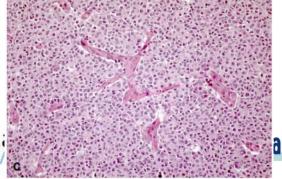
ORIGINAL PAPER

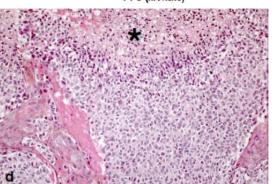
Emeline Tabouret^{1,2} · Anh Tuan Nguyen³ · Caroline Dehais⁴ · Catherine Carpentier⁵ · François Ducra Ahmed Idbaih^{4,5} · Karima Mokhtari^{4,5,8} · Anne Jouvet⁹ · Emmanuelle Uro-Coste^{10,11} · Carole Colin² · Olivier Chinot^{1,2} · Hugues Loiseau¹² · Elisabeth Moyal^{13,14,15} · Claude-Alain Maurage¹⁶ · Marc Polivka Emmanuèle Lechapt-Zalcman^{18,19} · Christine Desenclos²⁰ · David Meyronet^{7,9} · Jean-Yves Delattre^{4,5}

Months


Neuro-Oncology


Neuro-Oncology 18(6), 888-890, 2016 doi:10.1093/neuonc/now085


Letter to the Editor


Mitotic index, microvascular proliferation, and necrosis define 3 pathological subgroups of prognostic relevance among 1p/19q co-deleted anaplastic oligodendrogliomas

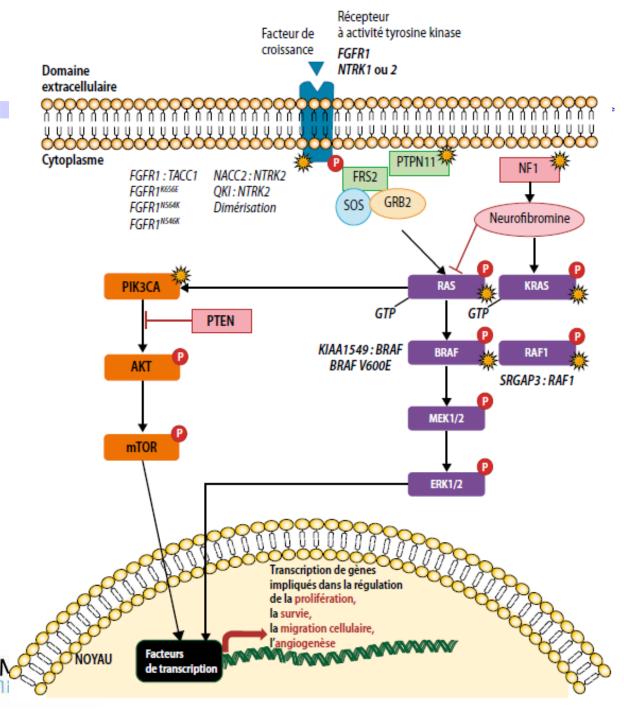
	1p/19q co-deleted patients (N = 157)	
	os	PFS
Age at diagnosis	0.030	0.031
Sex	0.647	0.548
Preoperative Karnofsky performance status	0.234	0.013
Extent of surgery	0.515	0.633
Postoperative treatment	0.147	0.008
Pathological subgroups	0.025	0.025
Microvascular proliferation	0.025	0.079
Necrosis	0.035	0.013
Number of mitoses	0.024	0.036
KI67 expression	0.002	0.079

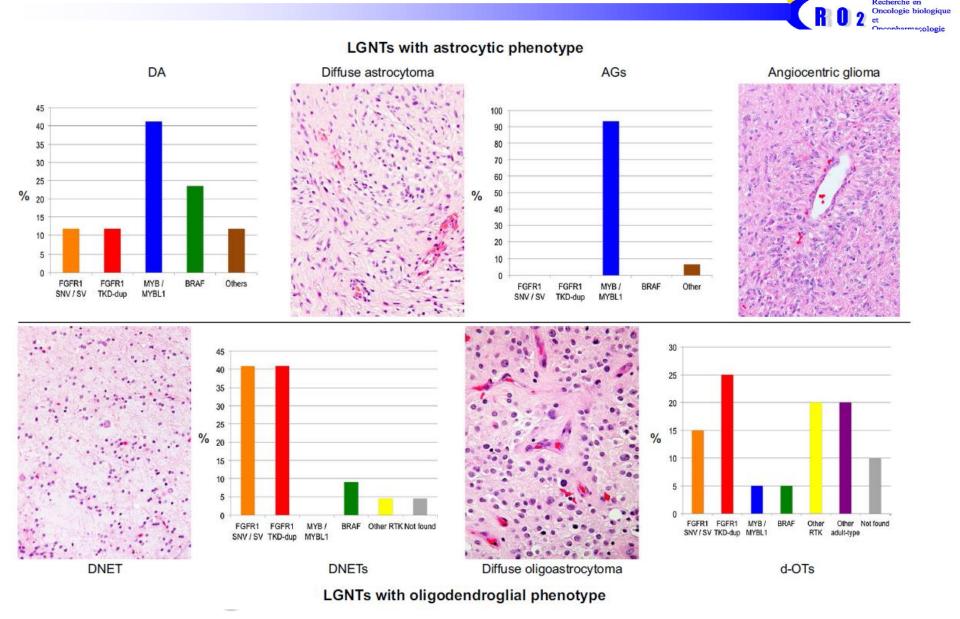
Limits 2: diffuse gliomas and glioneuronal tumor in children

- The diffuse gliomas in children should be better characterized according to new genetic features
- The 2016 edition contains « pediatric boxes » to highlight differences between adults but this is not sufficient

Oligodendroglioma lacking IDH mutation and 1p/19q codeletion (paediatric-type oligodendroglioma)

A small subset of histologically classic oligodendrogliomas are found to lack IDH mutation and 1p/19q codeletion on appropriate molecular testing. This group includes the majority of oligodendrogliomas in children and adolescents {1361,2057,2157}. In these cases, it is important to check carefully for and exclude histological mimics that may contain oligodendrocyte-like tumours cells, in particular dysembryoplastic neuroectodermal tumour, extraventricular

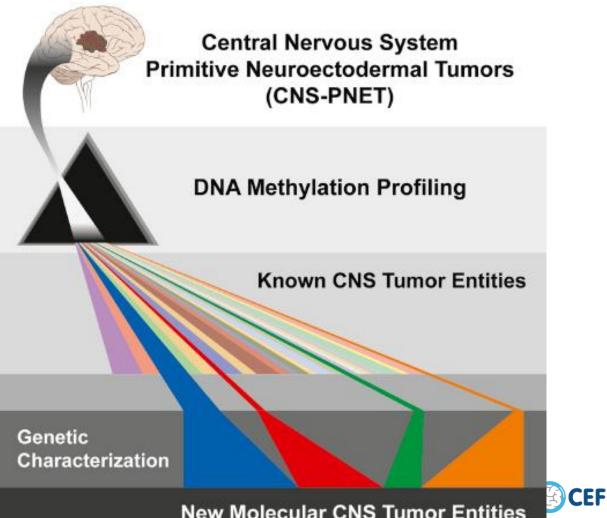




MAPkinases
pathway
alterations
characterized
pilocytic
astrocytomas
and glioneuronal
tumors

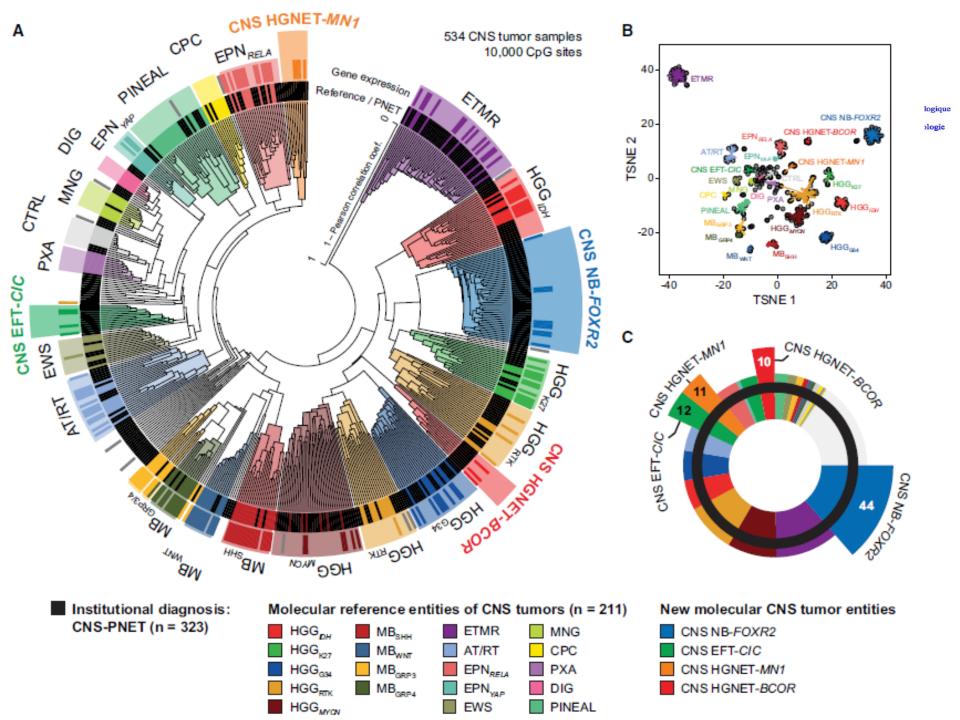
Inserm

Genetic alterations in PLGG Qaddoumi et al., 2016



Limits 3: CNS embryonal tumors NOS (Previous CNS PNET): the future

New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs


Sturm et al 2016

New Molecular CNS Tumor Entities

CIMPACT-NOW

Future directions

Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy

To provide a forum to evaluate and recommend proposed changes to future CNS tumor classifications, cIMPACT-NOW will at regular intervals facilitate input and consensus review of novel diagnostically relevant data and determine how such information can be practically incorporated into CNS tumor classifications. While it is understood that the major impact on international brain tumor classification comes about through the WHO classification update process, it is anticipated that this additional process will "see impact" in selected tumor types and in time periods between the WHO classification updates. The cIMPACT-NOW updates are not intended to supplant the existing WHO classification, but to provide possible guidelines for practicing diagnosticians and future WHO classification updates.

cIMPACT-NOW

Ken Aldape

Dan Brat

NOW

David Capper

David W. Ellison

Dominique Figarella-Branger

Cynthia Hawkins

David N. Louis

Werner Paulus

Arie Perry

Guido Reifenberger

cIMPACT-NOW (cont.)

Andreas von Deimling

Pieter Wesseling

cIMPACT-NOW Clinical Advisory Panel

Tracy Batchelor

J. Gregory Cairncross

Stefan Pfister

Stefan Rutkowski

Michael Weller

Wolfgang Wick

Conclusions

The WHO 2016 classification of brain tumors represent an important step forward over 2007

- Introduction of genetic markers that should be widely used
- > Is likely an intermediate stage before the future fith edition of the WHO classification

